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Abstract. A next-to-leading order analysis of inelastic electroproduction of charm is performed using an
interpolating scheme which maps smoothly onto massless QCD evolution at large Q2 and photon–gluon
fusion at small Q2. In contrast with earlier analyses, this scheme allows the inclusion of quark and target
mass effects and heavy quark thresholds, as well as possible non-perturbative, or intrinsic, charm contri-
butions. We find no conclusive evidence in favor of an intrinsic charm component in the nucleon, although
several data points which disagree with perturbative QCD expectations will need to be checked by future
experiments.

1 Introduction

Understanding the role played in the nucleon by heavy
quarks, such as the charm quark, is necessary for a num-
ber of reasons. Firstly, one cannot claim to have unrav-
eled the rich structure of the nucleon sea until one has
mapped out the details of the distribution of its virtual
charm and heavier1 flavors. Secondly, in the absence of a
direct probe of gluons, charm leptoproduction remains one
of the main sources of information on the nucleon’s gluon
distribution. Furthermore, tagging charm in neutrino and
antineutrino scattering allows one to probe the strange
and antistrange quark densities in the nucleon. From a
more theoretical point of view, in order to have a reliable
procedure through which to analyze deep-inelastic scat-
tering data, one needs to consistently incorporate heavy
quark masses and threshold effects in the QCD evolution
equations.

Recently, important new data have become available
on the charm structure function, F c

2 , of the proton from
the H1 [1] and ZEUS [2] collaborations at HERA, which
have probed the small-x region down to x = 8× 10−4 and
2 × 10−4, respectively. At these values of x, the charm
contribution to the total proton structure function, F p

2 , is
found to be around 25%, which is a considerably larger
fraction than that found by the European Muon Collab-
oration at CERN [3] at somewhat larger x, where it was
only ∼ 1% of F p

2 . Extensive theoretical analyses in recent
years have generally served to confirm that the bulk of the

a Present address: Jefferson Lab., 12000 Jefferson Ave., New-
port News, VA 23606, USA

1 Although in practice the direct accessibility of bottom and
top quark densities is likely to remain elusive for some time.
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Fig. 1. Photon–gluon fusion process at leading order in αs

F c
2 data can be described through perturbative generation

of charm within QCD.
At the same time, there are several lingering pieces

of evidence which seem to suggest the possibility that
a small component of charm exists which is intrinsically
non-perturbative in origin [4–8]. One of these is the EMC
data [3] at large x, some of which appear to lie above the
perturbative QCD predictions, and which have in the past
been taken [4] as evidence for a non-perturbative, or “in-
trinsic” charm component. Furthermore, as recently dis-
cussed in [6], there are some indications of intrinsic charm
also from hadronic reactions, such as leading charm pro-
duction in πN and Y N scattering. As found in [9], some
intrinsic charm may account for the larger than expected
number of fast correlated J/ψ pairs seen in the NA3 πN
experiment at CERN [10], as well as for the anomalous
polarization of J/ψ seen in inclusive J/ψ production in
πN collisions [11].
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The initial analyses of the leptoproduction data sug-
gested an intrinsic charm component of the nucleon with
normalization of around 1%, although subsequent, more
sophisticated, treatments incorporating higher-order ef-
fects tended to find only a fraction of a percent. The basic
starting assumption in these analyses is that the pertur-
bative generation of charm proceeds through the photon–
gluon fusion process, illustrated in Fig. 1. In their pioneer-
ing analysis, Hoffman and Moore [5] considered the O(αs)
corrections to the intrinsic charm distributions, as well as
quark and target mass effects on the charm cross section.
With these refinements, their work suggested that an in-
trinsic charm component of the proton, at a level of order
0.3%, was allowed – even required – by the data. In a
more recent study, Harris, Smith and Vogt [6] reanalyzed
the EMC data within the framework of [5] with updated
parton distributions, and O(αs) corrections to the hard
scattering cross section. They found that while no clear
statements about intrinsic charm could be made at lower
energy transfers, ν . 100 GeV, data at larger ν ∼ 170 GeV
could be best fitted with an additional 0.86 ± 0.60% in-
trinsic charm component [6].

Despite these claims of evidence for intrinsic charm, a
number of recent global parameterizations of parton distri-
butions [12,13] have concluded that all F c

2 data, including
those from the EMC, can be understood in terms of per-
turbative QCD alone, there being no additional intrinsic
charm component necessary. In view of these conflicting
results, it seems important that the question of the pres-
ence or otherwise of intrinsic charm be addressed using
the latest available theoretical techniques for calculating
F c

2 , as well as different models for intrinsic charm.
To set the context for our analysis, we should point

out a number of features which have been common to all
earlier treatments of intrinsic charm in leptoproduction.
Firstly, one invariably assumes that photon–gluon fusion
(together with perturbative QCD corrections) is solely re-
sponsible for perturbatively generated charm, irrespective
of the scale Q2 at which one works. In light of recent devel-
opments in incorporating quark mass effects in perturba-
tive QCD, it is now in principle possible to go beyond this
approximation and include more appropriate treatments
in kinematic regions where photon–gluon fusion alone may
not be the only relevant perturbative mechanism. A sec-
ond point concerns the way that intrinsic charm is com-
bined with the perturbative contributions. In particular,
no treatment to date has explicitly considered the effects
of Q2 evolution on the non-perturbative charm distribu-
tion from the “intrinsic” scale to the scale where data are
taken 2.

In this paper we perform a comprehensive next-to-
leading order analysis of the charm production data in
which we compare several different methods of implement-
ing charm in QCD structure functions. In particular, we
consider

2 In [14,15] it was shown that the introduction of an intrinsic
charm component in the heavy quark structure function allows
one to reduce the uncertainty in the calculation from one of
O(m2

c/Q2) to that of O(Λ2
QCD/Q2).

(1) Massless evolution. This approach assumes that below
a certain scale, µ2, there are nf active flavors. Above
this scale, one switches the number of flavors to nf +1
in the coupling constant, coefficient functions and in
the parton distributions. This scheme is sometimes re-
ferred to as the variable flavor number scheme (VFNS).

(2) Photon–gluon fusion. In this scheme, the heavy quark
is never treated as a parton, in the sense that the num-
ber of active flavors does not change, and a quark dis-
tribution for the heavy quark is never introduced. The
entire contribution to the physical structure function
from heavy quarks is generated through the photon–
gluon fusion process depicted in Fig. 1. This scheme is
usually referred to as the fixed flavor number scheme
(FFNS).

(3) Interpolating schemes. While photon–gluon fusion should
provide a reliable description of charm production in
the region close to m2

c , it certainly should fail at large
scales because of the lack of resummation of the log-
arithms in m2

c . Conversely, massless evolution should
be good at large Q2, but not in the region around m2

c .
Schemes such as that proposed by Aivazis et al. [16]
reproduce the relevant features of both the VFNS and
FFNS approaches – namely, a reduction to FFNS when
Q2 ∼ m2

c , and to VFNS when Q2 � m2
c .

In the present analysis we will utilize such a scheme;
however, unlike [16] we include the full quark mass depen-
dence not only in the gluon sector, but also in the quark
sector, which has become possible since the recent work
of Kretzer and Schienbein [17].

Throughout the analysis we shall work in the MS scheme,
and introduce an explicit charm distribution at a scale m2

c

for the VFNS and interpolating schemes. Furthermore,
our philosophy is that if there is any intrinsic charm at
all in the nucleon, it should be considered as a parton
distribution for all scales Q2 ≥ m2

c , if one is to use MS
anomalous dimensions when evolving the distributions at
next-to-leading order.

In the following sections we describe in turn the three
schemes for incorporating charm, beginning with the stan-
dard massless QCD evolution and the photon–gluon fusion
process in Sects. 2 and 3, respectively. The interpolating
scheme connecting these two limiting cases is described in
Sect. 4. The incorporation of intrinsic charm into the anal-
ysis is outlined in Sect. 5, where we survey several mod-
els for the non-perturbative charm component. Finally, in
Sect. 6 some conclusions are drawn from the analysis.

2 Massless evolution (VFNS)

The simplest approach to describing charm in the nucleon
is to assume that the charm distribution is c(x, µ2) =
c̄(x, µ2) = 0 below a certain scale, µ, and evolve charm
quarks as massless partons. Indeed, until recently, this has
been the standard approach adopted in global analyses of
parton distribution functions. In a scheme such as MS, the
scale µ is taken to be the charm quark mass,mc, if one per-
forms the calculation at next-to-leading order in the strong
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coupling constant, αs. Beyond that order, the choice of µ
is arbitrary [18,19]. Above threshold, Q2 > m2

c , the num-
ber of active flavors increases by one in the coupling con-
stant, splitting and coefficient functions. In this way the
charm quark distribution is generated solely through ra-
diative corrections from gluons and light quarks3 present
at Q2 < m2

c .
At next-to-leading order, the charm quark contribu-

tion to the proton structure function is given by

F
c(VFNS)
2 (x,Q2) = e2cCq(x,Q2) ⊗ (xc(x,Q2) + xc̄(x,Q2)

)
+e2cCg(x,Q2) ⊗ xg(x,Q2) (1)

with the boundary condition c(x,m2
c) = c̄(x,m2

c) = 0.
The convolution “⊗” here is defined by f(x) ⊗ h(x) ≡∫ 1

x
dyf(x/y)h(y). The quark and gluon coefficient func-

tions are those for massless quarks:

Cq(x,Q2) = δ(1 − x)

+
αs(Q2)

4π
CF

{
4
(

ln(1 − x)
1 − x

)
+

− 3
(1 − x)+

− 2(1 + x) ln(1 − x)

−2
1 + x2

1 − x
lnx+ 6 + 4x

}
, (2a)

Cg(x,Q2) =
αs(Q2)

4π
4TF

{
(1 − 2x+ 2x2) ln

1 − x

x

− 1 + 8x(1 − x)
}
, (2b)

where the (1−x)+ refers to the standard “+”prescription
[20].

The gluon coefficient function, Cg, is a pure singlet
quantity, and as such it is proportional to the number
of active flavors. Since one calculates the contribution to
F p

2 from a single flavor, Cg defined in (2b) is the usual
gluon coefficient function divided by the number of active
flavors. The gluon distribution is evolved by taking as in-
put a gluon distribution function at a scale m2

c , together
with a quark singlet distribution, Σ(x,m2

c) =
∑

q=u,d,s,c(
q(x,m2

c) + q̄(x,m2
c)
)
. Using the boundary condition

c(x,m2
c) = c̄(x,m2

c) = 0, the evolution is performed with
4 flavors.

The evolution of the charm quark density is slightly
more involved. Firstly, one evolves the singlet combina-
tion from m2

c to Q2 using the full number of active flavors.
The quark non-singlet combination η(x,Q2) =

∑
q=u,d,s

(q(x,Q2) + q̄(x,Q2)) − 3
(
c(x,Q2) + c̄(x,Q2)

)
is then

evolved over the same range. Since c(x,m2
c) = c̄(x,m2

c) = 0,
it turns out that one is in practice evolving

∑
q=u,d,s

(q(x,m2
c) + q̄(x,m2

c)) first as a singlet and then as a non-

3 Just as for the c quark, the u, d, and s quarks are light,
so too for heavier quarks, such as b, the u, d, s and c quarks
would be light, and so on.

singlet. The charm distribution at Q2 is then given by

c(x,Q2) + c̄(x,Q2) =
1
4
(
Σ(x,Q2) − η(x,Q2)

)
. (3)

For large Q2, Q2 � m2
c , one expects the generation of

charm through massless evolution to be a good approxima-
tion, a result confirmed in previous studies [21]. However,
at smaller Q2, Q2 ∼ m2

c , mass effects become important,
and this approach eventually breaks down. In this region a
better approximation is the photon–gluon fusion process,
which we discuss next.

3 Photon–gluon fusion (FFNS)

In the photon–gluon fusion approach the charm quark is
treated not as a parton, but rather as a heavy quark, so
that a charm quark distribution is never explicitly intro-
duced. Hence, c = c̄ = 0 for all x and Q2. The charm
structure function is given directly by a convolution of
the gluon distribution and the hard photon–gluon cross
section, Fig. 1.

At lowest order, the only process producing a heavy
qq̄ pair is photon–gluon fusion, and the structure function
is given by

F
c(FFNS)
2 (x,Q2)

= e2c
αs(µ2)

4π

∫ zmax

x

dzHg(z,Q2,m2
c)
x

z
g
(x
z
, µ2
)
, (4)

where zmax = 1/(1 + 4m2
c/Q

2) and µ2 is the mass fac-
torization (and renormalization) scale. The partonic cross
section for producing a massive quark pair is given by

Hg(z,Q2,m2
c)

= 4
(

1 − 2z + 2z2 + 4z(1 − 3z)
m2

c

Q2 − 8z2m
4
c

Q4

)

× ln
(

1 + β

1 − β

)

+β
(

32z(1 − z) − 4 − 16z(1 − z)
m2

c

Q2

)
, (5)

with

β =

√
1 − 4z

(1 − z)
m2

c

Q2 . (6)

Note that the coupling constant is calculated at µ2 with
3 light flavors, the same number as used throughout in
Hg. Once µ2 is fixed, the gluon distribution is no longer
evolved. Hence this scheme can be considered more straight-
forward to implement, as in principle one does not need to
solve any evolution equations for the distributions – it is
sufficient to take a parameterization of g(x) at a suitable
scale, and apply (4) directly.

One should mention that the gluon distribution in (4)
is that given by a leading-order analysis of the data. This is



676 F.M. Steffens et al.: Charm in the nucleon

because here one has terms of the form αs(µ2) ln(Q2/m2
c)

·g(x, µ2), which are typical next-to-leading order contribu-
tions if the gluon distribution is calculated in leading order
– hence one calculates O(αs) corrections to the structure
function. The use of a next-to-leading order gluon would
produce next-to-next-to-leading order corrections, which
would then require calculation of radiative corrections to
the photon–gluon fusion term, and the addition of extra
terms in (4) arising from heavy pair creation from light
quarks [22].

The advantage of the photon–gluon fusion formulation
is its simplicity. However, the use of (4) could be prob-
lematic at very large Q2 because of the large ln(Q2/m2

c)
term appearing in Hg. One way of circumventing this dif-
ficulty is to construct a scheme which retains the features
of photon–gluon fusion at moderate Q2, but maps onto
massless evolution when Q2 becomes very large.

4 Interpolating scheme

The description of charm production from the nucleon at
an arbitrary scale requires a scheme which consistently
interpolates between the two limits of VFNS and FFNS. A
number of authors have pursued the construction of such
schemes, both for unpolarized [16,21,23,24] and polarized
[25] scattering.

With the exception of [23], where the splitting func-
tions were modified for quark mass effects, the essence
of the interpolating schemes is to incorporate a mass de-
pendence, as a function of m2

c/Q
2, into the coefficient

functions which would enable (1) to be recovered when
Q2 � m2

c , and (4) when Q2 ∼ m2
c . By keeping the evo-

lution equations unmodified, one ensures that the parton
distributions (for the 3 light quarks, for the gluon, and
for the newly introduced charm distribution) are defined
consistently in the MS scheme.

Until recently, quark mass corrections were only in-
cluded in the quark coefficient function at O(α0

s ), which
beyond leading order was taken to have the form derived
for massless quarks [12,16] (unlike the gluon coefficient
function, Hg, for which quark mass corrections had been
included up to O(α2

s )). In fact, it is quite natural to think
that the gluon sector, through the Pcg splitting function,
would be responsible for the generation and evolution of
a heavy quark distribution. Kretzer and Schienbein [17]
have since calculated the quark mass corrections to the
quark coefficient function at O(αs), so that now all the
quark mass corrections to the structure functions are known
to this order. At the same time, one can also argue [17]
that since the O(αs) quark corrections mix with the O(α2

s )
gluon corrections, the use of quark and gluon coefficients
at O(αs) with massive quarks may be inconsistent. In-
deed, Thorne and Roberts [24] used the mixing to ap-
proximately derive the previously unknown O(αs) massive
quark coefficient function from the logarithmic Q2 deriva-
tive of Hg at O(α2

s ), which had become known earlier. In
the present analysis we will follow the standard approach
used in the light quark sector, in which one counts powers

of αs when deciding which contributions to keep. To cal-
culate the O(αs) corrections to the structure functions we
shall therefore use the full results for the gluon and quark
sectors to that order.

Kretzer and Schienbein [17] found that the O(αs) quark
mass corrections in the quark sector were small in absolute
terms, but of a similar order of magnitude as the total F c

2
in some regions of x, and for some choices of factorization
scale. There are at least two reasons, therefore, why these
effects need to be included in the present analysis. Firstly,
with the introduction of intrinsic charm the quark sector
may become relatively more important than the gluon sec-
tor in the region of x where intrinsic charm is non-zero;
and secondly, the analysis of [17] focused on quark mass
corrections to the quark coefficient functions at relatively
small values of x, while here we also need to examine the
size of these corrections at large x.

Of course, the full massive coefficient functions intro-
duce extra mass logarithms in the quark and gluon sec-
tors, resulting in double counting when using the evolution
equations for the charm and gluon densities. This is rem-
iniscent of a scenario where logarithms have not yet been
resummed by the renormalization group equations. The
problem can be circumvented easily enough by requiring
that in the limit Q2 → ∞ the massless coefficient func-
tions are recovered after subtracting appropriate terms,
Hsub

q,g :

lim
Q2→∞

(
Hq(z,Q2,m2

c) −Hsub
q (z,Q2,m2

c)
)

= Cq(z,Q2), (7a)

lim
Q2→∞

(
Hg(z,Q2,m2

c) −Hsub
g (z,Q2,m2

c)
)

= Cg(z,Q2). (7b)

The factorization scale is chosen to be µ2 = Q2 for both
the interpolating scheme and the VFNS (a choice to which
we restrict ourselves throughout this analysis). The func-
tion Hq(z,Q2,m2

c) in (7a) is the full massive quark coeffi-
cient function at O(αs), calculated in [17]. The subtraction
terms are given by

Hsub
q (z,Q2,m2

c)

=
αs(Q2)

2π
CF

[
1 + z2

1 − z

(
ln
Q2

m2
c

− 1 − 2 ln(1 − z)
)]

+
, (8a)

Hsub
g (z,Q2,m2

c)

=
αs(Q2)
π

TF ln
Q2

m2
c

(
1 − 2z + 2z2) . (8b)

Finally, one has

F c
2 (x,Q2) = e2c

∫ 1

ξ

dz
(
Hq(z,Q2,m2

c) −Hsub
q (z,Q2,m2

c)
)

× ξ

z

(
c(ξ/z,Q2) + c̄(ξ/z,Q2)

)
+ e2c

∫ zmax

x

dz Hg(z,Q2,m2
c)
x

z
g(x/z,Q2)

− e2c

∫ 1

ξ

dz Hsub
g (z,Q2,m2

c)
ξ

z
g(ξ/z,Q2), (9)
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Fig. 2. Charm structure function as a function of Q2 for
x = 0.05 and 0.2, evaluated according to the various schemes
discussed in the text. “IS” refers to the interpolating scheme of
(9), while “IS (massive g)” denotes the interpolating scheme
but with massless quark coefficient functions. The GRV pa-
rameterization [13] for the gluon is used

where the scaling variable ξ includes quark mass correc-
tions,

ξ =
1
2
x

(
1 +

√
1 +

4m2
c

Q2

)
, (10)

where the charm and gluon distributions in (9) are deter-
mined from the evolution in exactly the same way as in the
massless case described in Sect. 2. Note that the leading-
order part of F c

2 in (9) is given by e2cξ(c(ξ,Q
2)+ c̄(ξ,Q2)).

Fig. 2 shows F c
2 evaluated according to the three schemes

described above at x = 0.05 and 0.2, for a Q2 range rele-
vant to the EMC data. In addition, for the interpolating
scheme we also show the effect of neglecting the quark
mass dependence in the quark coefficient function, so that
Hq–Hsub

q is replaced by Cq in (9). For the parton distri-
butions the GRV parameterizations [13] are used. Note,
however, that in the GRV fit a charm quark distribution
is never introduced explicitly; rather F c

2 is always cal-
culated via the FFNS. The charm density is generated
from the GRV distributions by evolving with 3 flavors
from µ2 = 0.4 GeV2 to m2

c in next-to-leading order, then
from m2

c to Q2 with 4 flavors according to the VFNS. For
the FFNS calculation, the gluon distribution is evolved
in leading order from µ2 = 0.26 GeV2 to m2

c with 3 fla-
vors. (Note that the choice of µ2 in Fig. 2 is only for the
purpose of comparison with the other methods, which in-
troduce charm at m2

c . In the final calculations the scale

Fig. 3. Charm structure function calculated within the in-
terpolating scheme for different gluon distributions, GRV [13]
(dotted) and MRST [12] with minimum (dashed) and maxi-
mum (solid) gluons. The data at small x are from the ZEUS
Collaboration [2], while the large-x data are from the EMC [3].
For clarity the small-x curves have been scaled by a factor 10
(0.1) for Q2 = 25 (60)GeV2, and the large-x curves by a factor
100 (0.01)

µ2 = 4m2
c will be used for the FFNS, which is also the

value used in [13].)
At small x the effect of the mass-corrected quark co-

efficient functions on F c
2 turns out to be negligible, and

only slight at larger x. As Q2 becomes large, one can
see in Fig. 2 how the VFNS and interpolating schemes
converge. Even at small Q2 the difference between these
is not large. On the other hand, while the FFNS pro-
vides a good approximation to the interpolating scheme
for Q2 . 30 GeV2, it dramatically overestimates the full
result at larger Q2, especially at large x. Since this is the
region where most of the relevant EMC data which we
analyse lie, clearly a full interpolating scheme must be
used in order to draw reliable conclusions from the anal-
ysis. Finally, the FFNS and the interpolating scheme ap-
pear not to converge at low Q2 and large x. There are
indications from [13] that in this region the FFNS is not
stable, and the introduction of higher-order corrections
is necessary. In this respect note that the interpolating
scheme has by definition resummed all the logarithms in
the charm mass through the introduction of a charm quark
density, while the FFNS at O(αs) has only the leading log
in the mass. This may explain the apparent discrepancy.

Another source of uncertainty in the calculation of F c
2

comes from the gluon distribution at large x, which at
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present is not very well constrained. To cover the full range
of allowed gluon distributions, we use the maximum and
minimum gluon distributions from the MRST [12] param-
eterizations in addition to that of GRV [13]. The resulting
F c

2 for the different next-to-leading order glue is shown
in Fig. 3, where the evolution was again performed as
described in the massless evolution section. The data at
small x in Fig. 3 are taken from the ZEUS Collaboration
[2], while the large-x data are from the earlier EMC exper-
iment [3]. At small x all of the parameterizations fit the
data very well. At large x the maximum-gluon MRST and
GRV fits also provide good descriptions of the data, with
the exception of the two points at Q2 = 60 GeV2. The
last data point at x = 0.44 is not shown in the fits of [12,
13], even though this point appears to confirm the trend
indicated by the x = 0.24 point to lie somewhat above
the perturbative QCD calculation. Neglecting the large-x,
Q2 = 60 GeV2 points, one would conclude that perturba-
tive QCD fits the F c

2 data very well, without any need for
additional non-perturbative contributions [12,13]. On the
other hand, the authors of [24] have pointed out that the
x = 0.44 point at large Q2 is in conflict with perturbative
QCD. Furthermore, taking these points seriously has led
several authors [5,6] to conclude that the large-x EMC
data provide evidence for an intrinsic charm component
of the nucleon.

In the next section we shall study the large-x EMC
data more carefully, with the aim of ascertaining whether
these can be understood perturbatively, or whether they
can indeed be interpreted as suggesting that a perturba-
tive QCD treatment alone is incomplete.

5 Non-perturbative charm

The apparent discrepancy between some of the large-x F c
2

data and predictions based solely on perturbative QCD
has prompted several authors [4–6] to take seriously the
possibility that an additional, non-perturbative, compo-
nent of F c

2 may be necessary to account for the data over
the full range of x and Q2. In this section we discuss
how non-perturbative charm may affect F c

2 , particularly
at large x, and how the intrinsic contributions can be in-
cluded on the same footing as the perturbative effects.

In earlier analyses [5,6] intrinsic charm distributions
have simply been added to the perturbatively generated
F c

2 ,

F c
2 (x,Q2) = F

c(pert)
2 (x,Q2) + F

c(IC)
2 (x,Q2), (11)

where the perturbative contribution, F c(pert)
2 , is given by

(4) (with higher-order corrections), while the intrinsic charm
contribution, F c(IC)

2 , in its simplest form is

F
c(IC)
2 = e2cx(c

IC + c̄IC). (12)

In practice, O(αs) contributions to (12) are fully imple-
mented in the present analysis (the relevant expressions
are given in [5]).

Within the interpolating scheme of Sect. 4, the most
natural way to implement intrinsic charm in F c

2 is to mod-
ify the boundary condition for the charm quark distri-
bution. Instead of c(x, µ2) = c̄(x, µ2) = 0, one now has
non-zero distributions at the scale µ2 = m2

c . The physical
reason for this is that if there are non-perturbative pro-
cesses producing charm in the nucleon, this charm can be
resolved (brought on its mass shell) only when the system
has sufficient energy. In the MS scheme, the scale at which
the number of flavors changes from 3 to 4 is µ2 = m2

c in
a next-to-leading order analysis, so that regardless of the
dynamical origin of the charm, there will be enough en-
ergy in the system to open a new active flavor channel
for Q2 > m2

c . With this in mind, we next discuss several
non-perturbative models which attempt to describe the
generation of intrinsic charm in the nucleon.

5.1 Five-quark component of the nucleon (IC1)

Based on the initial observation [26] that the charm pro-
duction cross section in hadronic collisions was larger than
that predicted in leading-order perturbative QCD, Brod-
sky et al. [4] suggested that the discrepancy could be re-
solved by introducing an intrinsic, non-perturbative, charm
component in the nucleon wave function. In this model,
which we shall refer to as “IC1”, the nucleon is assumed
to contain, in addition to the lowest energy three-quark
Fock state, a more complicated, five-quark configuration
on the light-cone,

|p〉 = c0|uud〉 + c1|uudcc̄〉, (13)

where c20(c
2
1) is the three- (five-) quark probability. In or-

der to explain the original data [26], the normalization
of the latter was chosen to be 1% [4]. Assuming the five-
quark wave function to be inversely proportional to the
light-cone energy difference between the nucleon ground
state and the five-quark excited state, one finds that the
x dependence of the c quark distribution is given by [4]

cIC1(x) = 6x2 ((1 − x)(1 + 10x+ x2)

−6x(1 + x) log 1/x
)
. (14)

The anticharm distribution has the same shape as the
charm distribution in this model: cIC1(x) = cIC1(x).

Because the intrinsic charm in this model is assumed
to be generated through gg → cc̄ processes, with each
gluon originating from different valence quarks, the cc̄
probability scales like α2

s (m
2
c)/m

2
c relative to the pertur-

bative component [6,27]. This contribution can therefore
be interpreted as a higher-order effect in a 1/mc expan-
sion [6,27]. On the other hand, since this is generated
non-perturbatively, the resulting non-perturbative intrin-
sic charm distribution calculated at m2

c must be evolved
as a leading twist, on the same footing as the perturbative
contribution. Since there is only one kind of charm quark,
irrespective of its origin, QCD corrections affect the per-
turbative and non-perturbative distributions identically.
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5.2 Meson cloud model (IC2)

An alternative to the five-quark intrinsic charm model was
considered in [28–31], in which the charm sea was assumed
to arise from the quantum fluctuation of the nucleon to a
virtual D̄0 + Λ+

c configuration. In the following we shall
refer to this model as “IC2”. The nucleon charm radius
[28] and the charm quark distribution [29] were both esti-
mated in this framework. Furthermore, the effects of hard
charm distributions on large-x HERA cross sections, and
in particular on the so-called HERA anomaly [32,33], were
studied in [30].

The meson cloud model for the long-range structure of
the nucleon has been used extensively to describe various
flavor symmetry breaking phenomena observed in deep-
inelastic scattering and related experiments. It offers a
natural explanation of the d excess in the proton over u
[34,35] in terms of a pion cloud, which itself is a neces-
sary ingredient of the nucleon by chiral symmetry. It also
provides an intuitive framework to study the strangeness
content of the nucleon, through the presence of the kaon
cloud [36]. Whether the same philosophy can be justified
for a cloud of heavy charm mesons and baryons around the
nucleon is rather more questionable given the large mass
of the fluctuation. Nevertheless, to a crude approximation,
one may take the meson cloud framework as indicative of
the possible order of magnitude and shape of the non-
perturbative charm distribution. Furthermore, a natural
prediction of this model is that the c and c distributions
are not symmetric.

In the meson cloud model, the distribution of charm
and anticharm quarks in the nucleon at some low hadronic
scale can be approximated by [30]

cIC2(x) ≈ 3
2
fΛc/N (3x/2), (15a)

cIC2(x) ≈ fD̄/N (x), (15b)

where

fD̄/N (x) =
1

16π2

∫ ∞

0
dk2

⊥
g2(k2

⊥, x)
x(1 − x)(s−M2)2

×
(
k2

⊥ + [MΛc − (1 − x)M ]2

1 − x

)
(16)

is the light-cone distribution of D̄0 mesons in the nu-
cleon, and fΛc/N (x) = fD̄/N (1 − x) is the correspond-
ing distribution of Λ+

c baryons. In (16) the function g de-
scribes the extended nature of the D̄ΛcN vertex, with
the momentum dependence parameterized by g2(k2

⊥, x) =
g2
0(Λ2 +M2)/(Λ2 + s), where s is the D̄Λc center of mass

energy squared and g0 the D̄ΛcN coupling constant at
the pole, s = M2. As a first approximation, one might
take g0 to be of the same order of magnitude as the πNN
coupling constant. In [37] this coupling constant was esti-
mated within a QCD sum rule calculation.

5.3 Intrinsic charm distributions

The c and c distributions in the intrinsic charm models
IC1 and IC2 are shown in Fig. 4, each normalized to a

Fig. 4. Charm quark distributions from the intrinsic charm
models IC1 [30] (solid) and IC2 [4] (dashed), both normalized
to 1%, and from the MRST parameterization [12] (with maxi-
mal gluon) at Q2 = 5GeV2 (dotted)

common value of 1%. For the IC2 model this corresponds
to a cutoff Λ ≈ 2.2 GeV (for a probability of 0.5% one
would need Λ ≈ 1.7 GeV). Quite interestingly, the shapes
of the c quark distributions are quite similar in the two
models, with xc peaking at around x ∼ 0.3. However,
because the IC2 model gives a significantly harder c dis-
tribution, while IC1 implies that c and c̄ are equal, the
resulting structure function, F c

2 , will be somewhat harder
in the IC2 model. For comparison, a typical (soft) per-
turbatively generated charm distribution is also shown in
Fig. 4, evaluated from the MRST parameterization [12]
(with the maximal gluon) at Q2 = 5 GeV2.

The effects of the modified boundary conditions incor-
porating non-zero intrinsic charm distributions are shown
in Fig. 5 for the GRV parameterization [13] and for 1% in-
trinsic charm normalizations, at Q2 = 25, 45 and 60 GeV2.
The data at 60 GeV2 are well fitted with a 1% IC1 com-
ponent, although with the IC2 model one slightly overes-
timates the x = 0.44 point, due to its very hard c̄ dis-
tribution. At lower Q2 values, however, the addition of a
1% intrinsic charm component, from either model, over-
estimates the large-x points. This finding is essentially in-
dependent of the parton distribution functions employed,
as Fig. 6 illustrates for the MRST distributions [12]. From
this one can conclude that with a 1% intrinsic charm com-
ponent one cannot simultaneously resolve the large-x dis-
crepancy for the large-Q2 data, and maintain a satisfac-
tory fit to the data at lower Q2.

To compare with the procedure for incorporating in-
trinsic charm adopted in the earlier analysis in [5], we show
in Fig. 7 the F c

2 obtained from the FFNS through (11), and
the O(αs) corrections to the intrinsic charm component,
F

c(IC)
2 – see (57) of [5]. (Note that although the FFNS

curves appear to lie slightly below the data for Q2 = 25
and 45 GeV2, the inclusion of O(α2

s ) corrections leads to a
slight improvement for the lower Q2 data, without much
effect on the data at 60 GeV2 [13].) The results are qualita-
tively similar to those obtained from the full interpolating
scheme, namely the data at different Q2 seem to require
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Fig. 5. The charm structure function calculated through the
interpolating scheme (“IS”) in (9) for intrinsic charm distribu-
tions from models IC1 and IC2, normalized to 1%. The GRV
parameterizations [13] for the gluon and light quark densities
are used

different functional forms and normalizations for the in-
trinsic charm.

By varying the amount of intrinsic charm that the data
can accommodate, one can attempt to improve the overall
fit at all values of Q2. Using the minimum gluon fit of the
MRST parameterization one can determine the maximum
intrinsic charm allowed by the data for both the IC1 and
IC2 models. Slightly better fits can be obtained with a
0.75% IC1 charm distribution, and with a 0.4% IC2 dis-
tribution, as indicated in Fig. 8 for Q2 = 45 and 60 GeV2.
(The quality of the fit at Q2 = 25 GeV2 is similar to that
for the 45 GeV2 data.) However, even given the different
shapes of the charm and anticharm distributions in the
IC1 and IC2 models, it is still quite difficult to obtain a
quality fit to the data at all Q2 values. For the Hoffman
and Moore procedure [5] with the FFNS, one finds simi-
lar difficulties in reconciling the Q2 = 60 GeV2 data with

Fig. 6. As in Fig. 5, but with the MRST parameterization [12]
with the maximum gluon

those at lower Q2, even as a function of the intrinsic charm
model, and normalization (c.f. Fig. 9), although there may
be a slight preference for IC2 with 0.4% normalization.

In view of the difficulties in obtaining a simultaneous
fit to the F c

2 data at all measured values of x and Q2

with either the perturbative-only, or the intrinsic charm
scenarios, it seems imperative that the data, particularly
those at large x and Q2, be confirmed by independent
measurements.

6 Conclusion

Unraveling the rich structure of the nucleon sea is an ongo-
ing endeavor which has taught us a number of important
and sometimes surprising lessons in recent years. Far from
being a homogeneous background in which the valence
quarks reside, the sea has proved to exhibit considerable
intrinsic structure of its own. Perhaps the most conspicu-
ous structure is that in the light quark sea of the proton,
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Fig. 7. As in Fig. 5, but with F c
2 calculated according to the

FFNS in (11)

where a number of experiments have now confirmed be-
yond any doubt a significant excess of d̄ over ū quarks
[34]. This in turn has created an environment in which
the importance of non-perturbative effects in the nucleon
is appreciated to a far greater extent, even when discussing
structure at deep-inelastic energy scales [35].

More speculative, and less constrained experimentally,
are suggestions that the proton sea for heavier flavors
might also exhibit characteristics which cannot be attri-
buted to perturbative QCD mechanisms alone [30,36].
A prime example would be the presence of asymmetric
sea quark and antiquark distributions, which have been
searched for in the strange sector in both deep-inelastic
neutrino and antineutrino scattering, as well as in electro-
magnetic form factors at low energies [38]. Indeed, there
is no symmetry in QCD which would prevent sea quarks
and antiquarks having different momentum distributions,
just as there is no symmetry requiring the d̄ and ū sea to
be equivalent.

Fig. 8a–d. As in Fig. 5, but with different normalizations
for the IC1 and IC2 model distributions, and with the MRST
parameterization [12] with the minimum gluon
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Fig. 9. As in Fig. 7, but with different normalizations for the
IC1 and IC2 components

More challenging still it is to identify possible non-
perturbative effects in the charm sector, especially since
the magnitude of the total charm component of non-charm
hadrons is tiny. Nevertheless, a number of pioneering stud-
ies [4–6] of various charm production reactions have left us
with lingering doubts as to whether perturbative QCD is
the full story behind these processes. On the other hand,
the evidence does not appear to be conclusive enough to
warrant introduction of intrinsic charm distributions in
global data parameterizations [12,13,39], which to date
have generated the charm structure function purely per-
turbatively.

The present analysis has been an attempt to resolve
the issue of whether the charm electroproduction data do
indeed support the existence of non-perturbative compo-
nents of the nucleon wave function, or whether they can
be understood within conventional perturbative dynam-
ics. To this effect we have used the latest available tech-
nology to describe charm production over the entire range

of x and Q2 accessible to experiment. Our approach con-
sistently interpolates between the two asymptotic regions
of massless evolution at large Q2 and the photon–gluon
fusion process at low Q2, and includes quark and target
mass effects and corrections for mass thresholds.

To a certain extent our findings confirm the existing
state of affairs, in which some of the data show no evi-
dence at all for intrinsic charm, while other data cannot
be fitted without additional non-perturbative input. Even
within the rather different models of intrinsic charm con-
sidered here, with varying normalizations, it seems diffi-
cult to simultaneously fit the entire data set in terms of a
single intrinsic charm scenario – although there may be a
slight preference for intrinsic charm in model IC2 at a level
of about 0.4%. The clearest conclusion that one can draw
from this is that more quality data are urgently needed to
settle the issue. In particular, while the small-x domain
seems to be relatively well under control, the large-x re-
gion, where cross sections are small and measurements
more difficult, must be the focus of future experimental
efforts if the non-perturbative structure of the nucleon sea
is to be resolved.
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